Accueil / Cartes /Information sur les forêts du Canada provenant d'images satellitaires

Information sur les forêts du Canada provenant d'images satellitaires

Pour commencer

Navigation de base dans la carte

La page de la carte haute résolution des informations forestières au Canada du SNIF est entièrement interactive. Vous pouvez faire un zoom avant ou arrière, ou encore faire un balayage panoramique de la carte en cliquant sur celle-ci et en la faisant glisser. Les commandes de zoom se trouvent dans le coin supérieur gauche de la carte.

Visionner les renseignements relatifs aux changements

Certains emplacements sur la carte contiennent des renseignements relatifs aux attributs de la forêt canadiens. Pour visionner ces renseignements, cliquez sur la carte et, s’ils sont disponibles, les renseignements s’afficheront plus bas.

Autres boutons

Le sélecteur de couche, dans le coin supérieur droit de la carte, vous permet de changer l’ordre, d’activer et de désactiver ainsi que de changer l’opacité de toutes les couches liées à la carte.

Le bouton de légende permet de faire afficher un graphique de légende pour toutes les couches VISIBLES sur la carte, si disponible.

Légende

Les données aux forestiers que renferme ce produit ont une portée nationale (écosystème forestier entier) et offrent la première caractérisation complète des forêts au Canada à une résolution spatiale en rapport avec l’impact humain. Les informations recueillies représentent 25 années de renouvellement des peuplements dans les forêts du pays. Elles proviennent d’une source unique de données cohérentes et spatialement explicites, obtenues de manière entièrement automatisée. La capacité démontrée de caractériser les forêts à une résolution qui saisit l’impact humain est essentielle pour établir la base de référence destinée à la surveillance détaillée des écosystèmes forestiers des points de vue des sciences et de la gestion. Des séries chronologiques de données Landsat ont servi à caractériser les tendances nationales des perturbations causées par le feu et la récolte qui renouvellent les peuplements pour la période de 1985 à 2010 sur les 650 millions d’hectares forestiers du Canada (White et al. 2017). Les données Landsat ont une résolution de 30 m, de sorte que les informations relatives aux changements sont très détaillées. Par example, elles permettent de suivre les changements forestiers annuels qui renouvellent les peuplements. Les types de perturbation renouvelant les peuplements sont étiquetés feu de forêt et récolte, le niveau inférieur de confiance étant aussi fourni. La distinction et la communication des probabilités d’appartenance à une classe inférieure servent à indiquer aux utilisateurs que certains changements étaient difficiles à attribuer à un type, mais qu’ils sont considérés comme correctement catégorisés, de façon générale. Pour avoir un aperçu des données, du traitement des images et des méthodes de détection des changements dans les séries chronologiques, ainsi que des renseignements sur l’évaluation indépendante de l’exactitude des données, voir Hermosilla et coll. (2016). Les données offertes sont : 1. changement binaire/aucun changement, 2. année du changement et 3. type de changement. Si vous utilisez les données, prière d’en citer la source comme suit : White, J.C., M.A. Wulder, T. Hermosilla, N.C. Coops, and G. Hobart. (2017). A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment. 192: 303-321. DOI: 10.1016/j.rse.2017.03.035.

Imagerie mondiale (graphique d'arrière-plan) fournie par les services Web ESRI avec des sources d'Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN et la communautè des utilisateurs SIG

La science et les méthodes mises en place pour générer les informations présentées ici, qui suivent et caractérisent l’histoire des forêts canadiennes, ont été dirigées par le Service canadien des forêts de Ressources naturelles Canada, en partenariat avec l’Université de la Colombie-Britannique et grâce à l’appui de l’Agence spatiale canadienne, et ont été renforcées par la capacité de traitement de Westgrid de Calcul Canada.

Téléchargez les données ici:

Ensemble de données La description Lien de téléchargement
Feu de Forêt Année/dNBR 1985-2015 Ampleur des changements dans les feux de forêt de 1985 à 2015 Ampleur du changement spectral pour les feux de forêt qui se sont produits de 1985 à 2015. La valeur de l'ampleur du changement est exprimée par la différence normalisée du ratio de brûlage (dNBR), qui est calculée comme la variation entre les valeurs spectrales avant et après le feu à l'origine du changement. Le jeu de données est constitué de trois couches : 1) masque binaire des feux de forêt, 2) année où le plus de perturbation due aux feux de forêt a été détectée et 3) différence normalisée du ratio de brûlage (dNBR), transformée en une valeur de 0 à 200 pour un stockage efficace des données. La valeur réelle de la dNBR se calcule comme suit : dNBR = valeur / 100. Plus la dNBR est élevée, plus le feu a été intense. Le jeu de données représente 30 années de feux de forêt au Canada et est calculé de manière entièrement automatisée à partir d'une source unique de données spatiales explicites recueillies de façon constante. En effet, des séries chronologiques de données Landsat à résolution spatiale de 30 m ont permis de caractériser les tendances nationales des perturbations de renouvellement de peuplement causées par les feux de forêt de 1985 à 2015 sur les 650 millions d'hectares d'écosystèmes forestiers du Canada.
Si vous utilisez ces données, veuillez les citer comme suit : Hermosilla, T., M.A. Wulder, J.C. White, N.C. Coops, G.W. Hobart, L.B. Campbell, 2016. Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth 9(11), 1035-1054. (Hermosilla et al. 2016).
Voir les références ci'dessous pour un aperçu des données, du traitement des images et des méthodes de détection des changements dans les séries chronologiques utilisées, ainsi que pour des renseignements sur l'évaluation indépendante de l'exactitude des données.
Hermosilla, T., Wulder, M. A., White, J. C., Coops, N.C., Hobart, G.W., 2015. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sensing of Environment 158, 220-234. (Hermosilla et al. 2015a).
Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2015. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sensing of Environment 170, 121-132. (Hermosilla et al., 2015b). (Hermosilla et al. 2015b).
Hermosilla, T., M.A. Wulder, J.C. White, N.C. Coops, G. W. Hobart, (2017). Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation. 63,104-111.. ( Hermosilla et al. 2017).
Feu de Forêt Année/dNBR 1985-2015 (GeoTif, 1.2GB),
Des récolte forestière 1985-2015 Cartographie annuelle de la récolte forestière dans l’ensemble du Canada d’après des images satellites Landsat de 1985 à 2015 inclusivement Ce jeu de données est constitué de deux couches : 1) masque binaire des récolte forestière et 2) année de détection des perturbations par al récolte forestière. Représentant 31 ans du récolte forestière au Canada, les données sont cohérentes, spatialement explicites et obtenues de façon automatisée d’une seule source. Des séries chronologiques de données Landsat à résolution spatiale de 30 m ont été utilisées pour caractériser les tendances nationales des perturbations forestières renouvelant les peuplements, y compris celles attribuées à la récolte forestière, de 1985 à 2015 sur les 650 millions d’hectares d’écosystèmes forestiers du Canada (Hermosilla et al., 2016). On peut consulter les références ci dessous pour obtenir un aperçu des données, du traitement des images et des méthodes utilisées pour détecter les changements dans les séries temporelles, ainsi que des renseignements sur l’évaluation indépendante de l’exactitude des données. Lorsque vous utilisez ces données, veuillez en citer la source comme suit : Hermosilla, T., M.A. Wulder, J.C. White, N.C. Coops, G.W. Hobart, L.B. Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth. 9(11), 1035-1054. ( Hermosilla et al. 2016) For additional resources on the data used and methods applied, please see: Hermosilla, T., Wulder, M. A., White, J. C., Coops, N.C., Hobart, G.W., (2015). An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sensing of Environment 158, 220-234. ( Hermosilla et al. 2015a) Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., (2015). Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sensing of Environment 170, 121-132. ( Hermosilla et al. 2015b) Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2017. Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation 63, 104-111.( Hermosilla et al. 2017) Des récolte forestièr 1985-2015 (GeoTif, 351 MB),
Canada RVB 2015 Image composite Landsat RVB haute résolution du Canada (2015). Ce produit d’image national représente l’image composite de substitution « Composite to Change » (C2C) dérivée de milliers d’images Landsat acquises entre le 1er juillet et le 30 août 2015. Le processus global suivi est décrit dans Hermosilla et coll. (2016). avec les détails concernant la génération de composites de réflectance de surface sans lacune trouvés dans ( Hermosilla et al. 2015). Suivant la motivation et la justification présentées dans White et coll. (2014), l’imagerie Landsat a été soumise à une série d’étapes de traitement visant à éliminer les nuages et les ombres ainsi que la brume et d’autres effets atmosphériques indésirables. Des séries temporelles d’images Landsat d’une année à l’autre sont interrogées pour éviter d’avoir des emplacements pour lesquels il manque des valeurs pour assurer une couverture spatiale exhaustive des composites de réflectance de surface à l’échelle nationale. Lorsque vous utilisez ces données, veuillez en identifier la source comme suit : Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C. et Hobart, G.W., 2015. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sensing of Environment, 158, p. 220-234. Hermosilla et al. 2015). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, L.B.,Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, Vol. 9. ( Hermosilla et al. 2016). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, (2017). Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation, Vol. 63. ( Hermosilla et al. 2017). Image composite Landsat RVB 2015 (GeoTif, 29GB),
Couverture de terres 2015 Les données sur la couverture des terres forestières incluses dans ce produit ont une portée nationale (écosystème forestier complet) et représentent la caractérisation de la totalité de la couverture terrestre canadienne pour 2015. Ce produit a été réalisé à l'aide d'images de réflectance composites annuelles sans lacune au moyen du processus « Virtual Land Cover Engine » (VLCE) (voir Hermosilla et coll., 2018) appliqué aux 650 millions d'hectares d'écosystèmes forestiers du Canada. Les éléments de l'approche de classification VLCE sont l'inclusion d'informations de perturbation dans les processus ainsi que la garantie que les transitions de classes dans le temps sont logiques. En outre, un modèle de Markov caché est mis en œuvre pour évaluer les vraisemblances de classe d'années individuelles afin de réduire la variabilité et le bruit possible dans les affectations de classe d'année en année (pour les cas où les vraisemblances de classe sont similaires). Pour avoir un aperçu des données, du traitement des images et des méthodes de détection des changements dans les séries chronologiques, ainsi que des renseignements sur l’évaluation indépendante de l’exactitude des données, voir Hermosilla et coll. (2016). Pour consulter une description détaillée du processus VLCE et du produit de couverture terrestre généré par la suite, y compris une évaluation de la précision, veuillez consulter Hermosilla et al. (2018). Lorsque vous utilisez ces données, veuillez en identifier la source comme suit : White, J.C., M.A. Wulder, T. Hermosilla, N.C. Coops, and G. Hobart. (2017). A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment. 192: 303-321. (White et al. 2017). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, L.B.,Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, Vol. 9. ( Hermosilla et al. 2016). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, (2017). Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation, Vol. 63. ( Hermosilla et al. 2017). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, (2018). Disturbance-Informed Annual Land Cover Classification Maps of Canada's Forested Ecosystems for a 29-Year Landsat Time Series. Canadian Journal of Remote Sensing. Vol. 44. ( Hermosilla et al. 2018). Couverture de terres 20155 (GeoTif, 1.7GB),
Terres humides 2000-16 Les données binaires sur les terres humides présentées dans ce produit ont une étendue nationale (ensemble de l’écosystème forestier) et constituent une caractérisation entière pour la période s’étendant de 2001 à 2016 (Wulder et coll., 2018). Ce produit a été réalisé à l’aide d’images composites annuelles de la réflectance sans lacunes ainsi que de cartes annuelles des changements forestiers pour les 650 millions d’hectares d’écosystèmes forestiers du Canada, en suivant le processus du Virtual Land Cover Engine (VLCE) (voir Hermosilla et coll., 2018). La méthode de classification VLCE consiste notamment à inclure de l’information sur les perturbations dans les processus ainsi qu’à s’assurer que les transitions de classe dans le temps sont logiques. En outre, un automate de Markov à états cachés est utilisé pour évaluer les probabilités de classe pour chaque année afin de réduire la variabilité et le bruit possible dans les attributions de classe d’une année à l’autre (p. ex., lorsque les probabilités de classe sont du même ordre). Pour ce produit, afin qu’un pixel puisse être actuellement considéré comme une terre humide, il doit avoir été classé comme tel pendant au moins 80 % du temps entre 2001 et 2016 inclusivement ou pendant treize de ces années. Pour avoir un aperçu des données, du traitement des images et des méthodes appliquées pour la détection des changements dans les séries chronologiques, veuillez consulter Wulder et coll. (2018). Une description détaillée du processus VLCE et du produit résultant décrivant la couverture terrestre, y compris l’évaluation de l’exactitude, se trouve dans Hermosilla et coll. (2018). Lorsque vous utilisez ces données, veuillez en identifier la source comme suit : Wulder, M.A., Z. Li, E. Campbell, J.C. White, G. Hobart, T. Hermosilla, and N.C. Coops (2018). A National Assessment of Wetland Status and Trends for Canada’s Forested Ecosystems Using 33 Years of Earth Observation Satellite Data. Remote Sensing.( Wulder et al. 2018). For a detailed description of the VLCE process and the subsequently generated land cover product, including an accuracy assessment, please see Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, (2018). Disturbance-Informed Annual Land Cover Classification Maps of Canada's Forested Ecosystems for a 29-Year Landsat Time Series. Canadian Journal of Remote Sensing. Vol. 44. ( Hermosilla et al. 2018). Terres humides 2000-2016 (GeoTif, 607MB),
Terres humides 84-16 Les données de dénombrement annuel des terres humides présentées dans ce produit ont une étendue nationale (ensemble de l’écosystème forestier) et constituent une caractérisation entière des terres humides pour la période 1984-2016 (Wulder et coll., 2018). Ce produit a été réalisé à l’aide d’images composites annuelles de la réflectance sans lacunes ainsi que de cartes annuelles des changements forestiers pour les 650 millions d’hectares d’écosystèmes forestiers du Canada, suivant le processus du Virtual Land Cover Engine (VLCE) (voir Hermosilla et coll., 2018). La méthode de classification VLCE consiste notamment à inclure de l’information sur les perturbations dans les processus ainsi qu’à s’assurer que les transitions de classe dans le temps sont logiques. En outre, un automate de Markov à états cachés est utilisé pour évaluer les probabilités de classe pour chaque année afin de réduire la variabilité et le bruit possible dans les attributions de classe d’une année à l’autre (p. ex., lorsque les probabilités de classe sont du même ordre). Les valeurs peuvent varier de 0 à 33, désignant le nombre d’années, entre 1984 et 2016, où un pixel a été classé « terre humide » ou « terre humide arborée » dans le cube de données VLCE. Pour avoir un aperçu des données, du traitement des images et des méthodes appliquées pour détecter des changements, dans les séries chronologiques, ainsi que de l’information sur l’évaluation indépendante de l’exactitude des données, voir Hermosilla et coll. (2016). Hermosilla et coll. (2018) donnent une description détaillée du processus VLCE et du produit de couverture terrestre résultant, y compris l’évaluation de l’exactitude. Wulder et coll. (2018) décrivent les analyses ciblées des terres humides. Lorsque vous utilisez ces données, veuillez en citer la source comme suit : Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, L.B.,Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, Vol. 9. ( Hermosilla et al. 2016). A detailed description of the VLCE process and the subsequently generated land cover product, including an accuracy assessment, please see Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, (2018). Disturbance-Informed Annual Land Cover Classification Maps of Canada's Forested Ecosystems for a 29-Year Landsat Time Series. Canadian Journal of Remote Sensing. Vol. 44. ( Hermosilla et al. 2018). The focused wetland analyses can be found described in A National Assessment of Wetland Status and Trends for Canada’s Forested Ecosystems Using 33 Years of Earth Observation Satellite Data. (2018) Wulder, M.A., Z Li, E. M. Campbell, J. C. White, G. Hobart, T. Hermosilla and N. C. Coops.,Remote Sensing, 10, 1263-1282, ( Wulder et al. 2018) Dénombrement annuel des terres humides 1984-2016 (GeoTif, 1.7GB),
Hauteur moyenne 2015 Hauteur moyenne des premiers retours lidar (m). Représente la hauteur moyenne du couvert. Des produits relatifs à la structure des écosystèmes forestiers du Canada ont été créés et rendus accessibles à tous. Les produits partagés sont fondés sur des données scientifiques examinées par des pairs et relient des aspects de la structure de la forêt, notamment : (i) des mesures calculées directement à partir du nuage de points lidar avec des hauteurs normalisées par rapport à la surface du sol (p. ex. densité, hauteur du couvert) et (ii) des attributs d'inventaire modélisés, obtenus selon une approche fondée sur la superficie et produits à partir de données de placettes au sol et de balayage par laser aéroporté (volume, biomasse). Les estimations de la structure forestière ont été générées en combinant l'information provenant des « parcelles lidar » (Wulder et coll., 2012) avec les composites à base de pixels Landsat (White et al. 2014; Hermosilla et al. 2016 ) en utilisant l'imputation selon la méthode du plus proche voisin avec une mesure de distance basée sur les forêts aléatoires. Ces produits ont été créés pour répondre aux besoins d'information de la surveillance stratégique des forêts et ne sont pas destinés à appuyer la gestion opérationnelle des forêts. Tous les produits ont une résolution spatiale de 30 m. Pour une description détaillée des données, des méthodes appliquées et des résultats de l'évaluation de la précision, Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Hauteur moyenne (GeoTif, 9.7 GB),
Surface terrière 2015 Surface terrière. Surface transversale de la tige d'un arbre à hauteur de poitrine. La somme de la surface transversale (c'est-à-dire la surface terrière) de chaque arbre en mètres carrés dans une placette, divisée par la surface de la placette (ha) (unités = m2ha). Des produits relatifs à la structure des écosystèmes forestiers du Canada ont été créés et rendus accessibles à tous. Les produits partagés sont fondés sur des données scientifiques examinées par des pairs et relient des aspects de la structure de la forêt, notamment : (i) des mesures calculées directement à partir du nuage de points lidar avec des hauteurs normalisées par rapport à la surface du sol (p. ex. densité, hauteur du couvert) et (ii) des attributs d'inventaire modélisés, obtenus selon une approche fondée sur la superficie et produits à partir de données de placettes au sol et de balayage par laser aéroporté (volume, biomasse). Les estimations de la structure forestière ont été générées en combinant l'information provenant des « parcelles lidar » (Wulder et coll., 2012) avec les composites à base de pixels Landsat (White et al. 2014; Hermosilla et al. 2016 ) en utilisant l'imputation selon la méthode du plus proche voisin avec une mesure de distance basée sur les forêts aléatoires. Ces produits ont été créés pour répondre aux besoins d'information de la surveillance stratégique des forêts et ne sont pas destinés à appuyer la gestion opérationnelle des forêts. Tous les produits ont une résolution spatiale de 30 m. Pour une description détaillée des données, des méthodes appliquées et des résultats de l'évaluation de la précision, Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Surface terrière (GeoTif, 9.3 GB),
Coefficient de variation de la hauteur 2015 Coefficient de variation de la hauteur des premiers retours (%). Représente la variabilité des hauteurs du couvert par rapport à la hauteur moyenne du couvert. Des produits relatifs à la structure des écosystèmes forestiers du Canada ont été créés et rendus accessibles à tous. Les produits partagés sont fondés sur des données scientifiques examinées par des pairs et relient des aspects de la structure de la forêt, notamment : (i) des mesures calculées directement à partir du nuage de points lidar avec des hauteurs normalisées par rapport à la surface du sol (p. ex. densité, hauteur du couvert) et (ii) des attributs d'inventaire modélisés, obtenus selon une approche fondée sur la superficie et produits à partir de données de placettes au sol et de balayage par laser aéroporté (volume, biomasse). Les estimations de la structure forestière ont été générées en combinant l'information provenant des « parcelles lidar » (Wulder et coll., 2012) avec les composites à base de pixels Landsat (White et al. 2014; Hermosilla et al. 2016 ) en utilisant l'imputation selon la méthode du plus proche voisin avec une mesure de distance basée sur les forêts aléatoires. Ces produits ont été créés pour répondre aux besoins d'information de la surveillance stratégique des forêts et ne sont pas destinés à appuyer la gestion opérationnelle des forêts. Tous les produits ont une résolution spatiale de 30 m. Pour une description détaillée des données, des méthodes appliquées et des résultats de l'évaluation de la précision,Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Coefficient de variation de la hauteur (GeoTif, 8.1 GB),
Écart-type de la hauteur 2015 Écart-type de la hauteur des premiers retours lidar (m). Représente la variabilité de la hauteur du couvert. Des produits relatifs à la structure des écosystèmes forestiers du Canada ont été créés et rendus accessibles à tous. Les produits partagés sont fondés sur des données scientifiques examinées par des pairs et relient des aspects de la structure de la forêt, notamment : (i) des mesures calculées directement à partir du nuage de points lidar avec des hauteurs normalisées par rapport à la surface du sol (p. ex. densité, hauteur du couvert) et (ii) des attributs d'inventaire modélisés, obtenus selon une approche fondée sur la superficie et produits à partir de données de placettes au sol et de balayage par laser aéroporté (volume, biomasse). Les estimations de la structure forestière ont été générées en combinant l'information provenant des « parcelles lidar » (Wulder et coll., 2012) avec les composites à base de pixels Landsat (White et al. 2014; Hermosilla et al. 2016 ) en utilisant l'imputation selon la méthode du plus proche voisin avec une mesure de distance basée sur les forêts aléatoires. Ces produits ont été créés pour répondre aux besoins d'information de la surveillance stratégique des forêts et ne sont pas destinés à appuyer la gestion opérationnelle des forêts. Tous les produits ont une résolution spatiale de 30 m. Pour une description détaillée des données, des méthodes appliquées et des résultats de l'évaluation de la précision, Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Écart-type de la hauteur (GeoTif, 9.5 GB),
Volume brut de la tige 2015 Volume brut de la tige. Le volume brut de l'arbre est calculé à l'aide d'équations allométriques propres à chaque espèce. Dans les placettes terrain mesurées, le volume total brut par hectare est calculé en additionnant le volume total brut de tous les arbres et en divisant par la superficie de la placette (unités = m3ha-1). Des produits relatifs à la structure des écosystèmes forestiers du Canada ont été créés et rendus accessibles à tous. Les produits partagés sont fondés sur des données scientifiques examinées par des pairs et relient des aspects de la structure de la forêt, notamment : (i) des mesures calculées directement à partir du nuage de points lidar avec des hauteurs normalisées par rapport à la surface du sol (p. ex. densité, hauteur du couvert) et (ii) des attributs d'inventaire modélisés, obtenus selon une approche fondée sur la superficie et produits à partir de données de placettes au sol et de balayage par laser aéroporté (volume, biomasse). Les estimations de la structure forestière ont été générées en combinant l'information provenant des « parcelles lidar » (Wulder et coll., 2012) avec les composites à base de pixels Landsat (White et al. 2014; Hermosilla et al. 2016 ) en utilisant l'imputation selon la méthode du plus proche voisin avec une mesure de distance basée sur les forêts aléatoires. Ces produits ont été créés pour répondre aux besoins d'information de la surveillance stratégique des forêts et ne sont pas destinés à appuyer la gestion opérationnelle des forêts. Tous les produits ont une résolution spatiale de 30 m. Pour une description détaillée des données, des méthodes appliquées et des résultats de l'évaluation de la précision, Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Volume brut de la tige (GeoTif, 9.1 GB),
Hauteur moyenne de Lorey 2015 Hauteur moyenne de Lorey. Hauteur moyenne des arbres pondérée par leur surface terrière (m). Des produits relatifs à la structure des écosystèmes forestiers du Canada ont été créés et rendus accessibles à tous. Les produits partagés sont fondés sur des données scientifiques examinées par des pairs et relient des aspects de la structure de la forêt, notamment : (i) des mesures calculées directement à partir du nuage de points lidar avec des hauteurs normalisées par rapport à la surface du sol (p. ex. densité, hauteur du couvert) et (ii) des attributs d'inventaire modélisés, obtenus selon une approche fondée sur la superficie et produits à partir de données de placettes au sol et de balayage par laser aéroporté (volume, biomasse). Les estimations de la structure forestière ont été générées en combinant l'information provenant des « parcelles lidar » (Wulder et coll., 2012) avec les composites à base de pixels Landsat (White et al. 2014; Hermosilla et al. 2016 ) en utilisant l'imputation selon la méthode du plus proche voisin avec une mesure de distance basée sur les forêts aléatoires. Ces produits ont été créés pour répondre aux besoins d'information de la surveillance stratégique des forêts et ne sont pas destinés à appuyer la gestion opérationnelle des forêts. Tous les produits ont une résolution spatiale de 30 m. Pour une description détaillée des données, des méthodes appliquées et des résultats de l'évaluation de la précision, Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Hauteur moyenne de Lorey (GeoTif, 9.6 GB),
Pourcentage des premiers retours à plus de 2m 2015 Pourcentage des premiers retours à plus de 2 m (%). Représente la densité du couvert. Des produits relatifs à la structure des écosystèmes forestiers du Canada ont été créés et rendus accessibles à tous. Les produits partagés sont fondés sur des données scientifiques examinées par des pairs et relient des aspects de la structure de la forêt, notamment : (i) des mesures calculées directement à partir du nuage de points lidar avec des hauteurs normalisées par rapport à la surface du sol (p. ex. densité, hauteur du couvert) et (ii) des attributs d'inventaire modélisés, obtenus selon une approche fondée sur la superficie et produits à partir de données de placettes au sol et de balayage par laser aéroporté (volume, biomasse). Les estimations de la structure forestière ont été générées en combinant l'information provenant des « parcelles lidar » (Wulder et coll., 2012) avec les composites à base de pixels Landsat (White et al. 2014; Hermosilla et al. 2016 ) en utilisant l'imputation selon la méthode du plus proche voisin avec une mesure de distance basée sur les forêts aléatoires. Ces produits ont été créés pour répondre aux besoins d'information de la surveillance stratégique des forêts et ne sont pas destinés à appuyer la gestion opérationnelle des forêts. Tous les produits ont une résolution spatiale de 30 m. Pour une description détaillée des données, des méthodes appliquées et des résultats de l'évaluation de la précision, Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Pourcentage des premiers retours à plus de 2 m (GeoTif, 4.3 GB),
Pourcentage des premiers retours au-dessus de la hauteur moyenne 2015 Pourcentage des premiers retours au-dessus de la hauteur moyenne (%). Représente la densité du couvert au-dessus de la hauteur moyenne du couvert. Des produits relatifs à la structure des écosystèmes forestiers du Canada ont été créés et rendus accessibles à tous. Les produits partagés sont fondés sur des données scientifiques examinées par des pairs et relient des aspects de la structure de la forêt, notamment : (i) des mesures calculées directement à partir du nuage de points lidar avec des hauteurs normalisées par rapport à la surface du sol (p. ex. densité, hauteur du couvert) et (ii) des attributs d'inventaire modélisés, obtenus selon une approche fondée sur la superficie et produits à partir de données de placettes au sol et de balayage par laser aéroporté (volume, biomasse). Les estimations de la structure forestière ont été générées en combinant l'information provenant des « parcelles lidar » (Wulder et coll., 2012) avec les composites à base de pixels Landsat (White et al. 2014; Hermosilla et al. 2016 ) en utilisant l'imputation selon la méthode du plus proche voisin avec une mesure de distance basée sur les forêts aléatoires. Ces produits ont été créés pour répondre aux besoins d'information de la surveillance stratégique des forêts et ne sont pas destinés à appuyer la gestion opérationnelle des forêts. Tous les produits ont une résolution spatiale de 30 m. Pour une description détaillée des données, des méthodes appliquées et des résultats de l'évaluation de la précision, Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Pourcentage des premiers retours au-dessus de la hauteur moyenne (GeoTif, 4.0 GB),
Total de la biomasse aérienne 2015 Total de la biomasse aérienne. La biomasse aérienne totale de chaque arbre est calculée à l'aide d'équations propres à chaque espèce. Dans les placettes au sol mesurées, on calcule la biomasse aérienne par hectare en additionnant les valeurs de tous les arbres d'une placette et en divisant cette valeur par la superficie de la placette. La biomasse aérienne peut être séparée en divers composants de la biomasse (p. ex. tige, écorce, branches, feuillage) (unités = t/ha). Des produits relatifs à la structure des écosystèmes forestiers du Canada ont été créés et rendus accessibles à tous. Les produits partagés sont fondés sur des données scientifiques examinées par des pairs et relient des aspects de la structure de la forêt, notamment : (i) des mesures calculées directement à partir du nuage de points lidar avec des hauteurs normalisées par rapport à la surface du sol (p. ex. densité, hauteur du couvert) et (ii) des attributs d'inventaire modélisés, obtenus selon une approche fondée sur la superficie et produits à partir de données de placettes au sol et de balayage par laser aéroporté (volume, biomasse). Les estimations de la structure forestière ont été générées en combinant l'information provenant des « parcelles lidar » (Wulder et coll., 2012) avec les composites à base de pixels Landsat (White et al. 2014; Hermosilla et al. 2016 ) en utilisant l'imputation selon la méthode du plus proche voisin avec une mesure de distance basée sur les forêts aléatoires. Ces produits ont été créés pour répondre aux besoins d'information de la surveillance stratégique des forêts et ne sont pas destinés à appuyer la gestion opérationnelle des forêts. Tous les produits ont une résolution spatiale de 30 m. Pour une description détaillée des données, des méthodes appliquées et des résultats de l'évaluation de la précision, Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. (Matasci et al. 2018) Total de la biomasse aérienne (GeoTif, 9.7 GB),
95e centile de la hauteur 2015 95e centile de la hauteur des premiers retours (m). Des produits relatifs à la structure des écosystèmes forestiers du Canada ont été créés et rendus accessibles à tous. Les produits partagés sont fondés sur des données scientifiques examinées par des pairs et relient des aspects de la structure de la forêt, notamment : (i) des mesures calculées directement à partir du nuage de points lidar avec des hauteurs normalisées par rapport à la surface du sol (p. ex. densité, hauteur du couvert) et (ii) des attributs d'inventaire modélisés, obtenus selon une approche fondée sur la superficie et produits à partir de données de placettes au sol et de balayage par laser aéroporté (volume, biomasse). Les estimations de la structure forestière ont été générées en combinant l'information provenant des « parcelles lidar » (Wulder et coll., 2012) avec les composites à base de pixels Landsat (White et al. 2014; Hermosilla et al. 2016 ) en utilisant l'imputation selon la méthode du plus proche voisin avec une mesure de distance basée sur les forêts aléatoires. Ces produits ont été créés pour répondre aux besoins d'information de la surveillance stratégique des forêts et ne sont pas destinés à appuyer la gestion opérationnelle des forêts. Tous les produits ont une résolution spatiale de 30 m. Pour une description détaillée des données, des méthodes appliquées et des résultats de l'évaluation de la précision, Matasci et al. (2018). Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. (Matasci et al. 2018) 95e centile de la hauteur (GeoTif, 7.3 GB),
Changement 85-11 Les données relatives aux changements forestiers que renferme ce produit ont une portée nationale (écosystème forestier entier) et offrent la première caractérisation complète des feux de forêt et des récoltes au Canada à une résolution spatiale en rapport avec l’impact humain. Les informations recueillies représentent vingt-cinq années de renouvellement des peuplements dans les forêts du pays. Elles proviennent d’une source unique de données cohérentes et spatialement explicites, obtenues de manière entièrement automatisée. La capacité démontrée de caractériser les forêts à une résolution qui saisit l’impact humain est essentielle pour établir la base de référence destinée à la surveillance détaillée des écosystèmes forestiers des points de vue des sciences et de la gestion. Des séries chronologiques de données Landsat ont servi à caractériser les tendances nationales des perturbations causées par le feu et la récolte qui renouvellent les peuplements pour la période de 1985 à 2010 sur les 650 millions d’hectares forestiers du Canada. Les données Landsat ont une résolution de 30 m, de sorte que les informations relatives aux changements sont très détaillées et en rapport avec l’impact humain. Elles permettent de suivre les changements forestiers annuels qui renouvellent les peuplements. Les types de perturbation renouvelant les peuplements sont étiquetés feu de forêt et récolte, le niveau inférieur de confiance étant aussi fourni. La distinction et la communication des probabilités d’appartenance à une classe inférieure servent à indiquer aux utilisateurs que certains changements étaient difficiles à attribuer à un type, mais qu’ils sont considérés comme correctement catégorisés, de façon générale. Pour avoir un aperçu des données, du traitement des images et des méthodes de détection des changements dans les séries chronologiques, ainsi que des renseignements sur l’évaluation indépendante de l’exactitude des données, voir Hermosilla et coll. Si vous utilisez les données, prière d’en citer la source comme suit : White, J.C., M.A. Wulder, T. Hermosilla, N.C. Coops, and G. Hobart. (2017). A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment. 192: 303-321. (White et al. 2017). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, L.B.,Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, Vol. 9. ( Hermosilla et al. 2016). Binary change/no-Change 1985-2011 (GeoTif, 227MB),
Changer le type 85-11 Les données relatives aux changements forestiers que renferme ce produit ont une portée nationale (écosystème forestier entier) et offrent la première caractérisation complète des feux de forêt et des récoltes au Canada à une résolution spatiale en rapport avec l’impact humain. Les informations recueillies représentent vingt-cinq années de renouvellement des peuplements dans les forêts du pays. Elles proviennent d’une source unique de données cohérentes et spatialement explicites, obtenues de manière entièrement automatisée. La capacité démontrée de caractériser les forêts à une résolution qui saisit l’impact humain est essentielle pour établir la base de référence destinée à la surveillance détaillée des écosystèmes forestiers des points de vue des sciences et de la gestion. Des séries chronologiques de données Landsat ont servi à caractériser les tendances nationales des perturbations causées par le feu et la récolte qui renouvellent les peuplements pour la période de 1985 à 2010 sur les 650 millions d’hectares forestiers du Canada. Les données Landsat ont une résolution de 30 m, de sorte que les informations relatives aux changements sont très détaillées et en rapport avec l’impact humain. Elles permettent de suivre les changements forestiers annuels qui renouvellent les peuplements. Les types de perturbation renouvelant les peuplements sont étiquetés feu de forêt et récolte, le niveau inférieur de confiance étant aussi fourni. La distinction et la communication des probabilités d’appartenance à une classe inférieure servent à indiquer aux utilisateurs que certains changements étaient difficiles à attribuer à un type, mais qu’ils sont considérés comme correctement catégorisés, de façon générale. Pour avoir un aperçu des données, du traitement des images et des méthodes de détection des changements dans les séries chronologiques, ainsi que des renseignements sur l’évaluation indépendante de l’exactitude des données, voir Hermosilla et coll. (2016). Si vous utilisez les données, prière d’en citer la source comme suit : White, J.C., M.A. Wulder, T. Hermosilla, N.C. Coops, and G. Hobart. (2017). A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment. 192: 303-321.(White et al. 2017). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, L.B.,Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, Vol. 9. ( Hermosilla et al. 2016). Changer le type 1985-2011 (GeoTif, 249MB),
Changer d'année 85-11 Les données relatives aux changements forestiers que renferme ce produit ont une portée nationale (écosystème forestier entier) et offrent la première caractérisation complète des feux de forêt et des récoltes au Canada à une résolution spatiale en rapport avec l’impact humain. Les informations recueillies représentent vingt-cinq années de renouvellement des peuplements dans les forêts du pays. Elles proviennent d’une source unique de données cohérentes et spatialement explicites, obtenues de manière entièrement automatisée. La capacité démontrée de caractériser les forêts à une résolution qui saisit l’impact humain est essentielle pour établir la base de référence destinée à la surveillance détaillée des écosystèmes forestiers des points de vue des sciences et de la gestion. Des séries chronologiques de données Landsat ont servi à caractériser les tendances nationales des perturbations causées par le feu et la récolte qui renouvellent les peuplements pour la période de 1985 à 2010 sur les 650 millions d’hectares forestiers du Canada. Les données Landsat ont une résolution de 30 m, de sorte que les informations relatives aux changements sont très détaillées et en rapport avec l’impact humain. Elles permettent de suivre les changements forestiers annuels qui renouvellent les peuplements. Les types de perturbation renouvelant les peuplements sont étiquetés feu de forêt et récolte, le niveau inférieur de confiance étant aussi fourni. La distinction et la communication des probabilités d’appartenance à une classe inférieure servent à indiquer aux utilisateurs que certains changements étaient difficiles à attribuer à un type, mais qu’ils sont considérés comme correctement catégorisés, de façon générale. Pour avoir un aperçu des données, du traitement des images et des méthodes de détection des changements dans les séries chronologiques, ainsi que des renseignements sur l’évaluation indépendante de l’exactitude des données, voir Hermosilla et coll. (2016). Si vous utilisez les données, prière d’en citer la source comme suit : White, J.C., M.A. Wulder, T. Hermosilla, N.C. Coops, and G. Hobart. (2017). A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment. 192: 303-321.(White et al. 2017). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, L.B.,Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, Vol. 9. ( Hermosilla et al. 2016). Changer d'année 1985-2011 (GeoTif, 280MB),
Changement 12-15 Les données type des changements forestiers décrites ici sont une mise à jour des données ouvertes publiées précédemment. La plage de dates pour ces données est de 2012 à 2015. Les données relatives aux changements forestiers que renferme ce produit ont une portée nationale (écosystème forestier entier) et offrent la première caractérisation complète des feux de forêt et des récoltes au Canada à une résolution spatiale en rapport avec l’impact humain. Les informations recueillies représentent vingt-cinq années de renouvellement des peuplements dans les forêts du pays. Elles proviennent d’une source unique de données cohérentes et spatialement explicites, obtenues de manière entièrement automatisée. La capacité démontrée de caractériser les forêts à une résolution qui saisit l’impact humain est essentielle pour établir la base de référence destinée à la surveillance détaillée des écosystèmes forestiers des points de vue des sciences et de la gestion. Des séries chronologiques de données Landsat ont servi à caractériser les tendances nationales des perturbations causées par le feu et la récolte qui renouvellent les peuplements pour la période de 1985 à 2010 sur les 650 millions d’hectares forestiers du Canada. Les données Landsat ont une résolution de 30 m, de sorte que les informations relatives aux changements sont très détaillées et en rapport avec l’impact humain. Elles permettent de suivre les changements forestiers annuels qui renouvellent les peuplements. Les types de perturbation renouvelant les peuplements sont étiquetés feu de forêt et récolte, le niveau inférieur de confiance étant aussi fourni. La distinction et la communication des probabilités d’appartenance à une classe inférieure servent à indiquer aux utilisateurs que certains changements étaient difficiles à attribuer à un type, mais qu’ils sont considérés comme correctement catégorisés, de façon générale. Pour avoir un aperçu des données, du traitement des images et des méthodes de détection des changements dans les séries chronologiques, ainsi que des renseignements sur l’évaluation indépendante de l’exactitude des données, voir Hermosilla et coll. (2016) Si vous utilisez les données, prière d’en citer la source comme suit : White, J.C., M.A. Wulder, T. Hermosilla, N.C. Coops, and G. Hobart. (2017). A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment. 192: 303-321.(White et al. 2017).Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, L.B.,Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, Vol. 9. ( Hermosilla et al. 2016). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, (2017). Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation, Vol. 63. ( Hermosilla et al. 2017). Changement 2012-2015 (GeoTif, 82MB),
Changer le type 12-15 Des changements forestiers au Canada 2012-2015. Les données type des changements forestiers décrites ici sont une mise à jour des données ouvertes publiées précédemment. La plage de dates pour ces données est de 2012 à 2015. Les données relatives aux changements forestiers que renferme ce produit ont une portée nationale (écosystème forestier entier) et offrent la première caractérisation complète des feux de forêt et des récoltes au Canada à une résolution spatiale en rapport avec l’impact humain. Les informations recueillies représentent vingt-cinq années de renouvellement des peuplements dans les forêts du pays. Elles proviennent d’une source unique de données cohérentes et spatialement explicites, obtenues de manière entièrement automatisée. La capacité démontrée de caractériser les forêts à une résolution qui saisit l’impact humain est essentielle pour établir la base de référence destinée à la surveillance détaillée des écosystèmes forestiers des points de vue des sciences et de la gestion. Des séries chronologiques de données Landsat ont servi à caractériser les tendances nationales des perturbations causées par le feu et la récolte qui renouvellent les peuplements pour la période de 1985 à 2010 sur les 650 millions d’hectares forestiers du Canada. Les données Landsat ont une résolution de 30 m, de sorte que les informations relatives aux changements sont très détaillées et en rapport avec l’impact humain. Elles permettent de suivre les changements forestiers annuels qui renouvellent les peuplements. Les types de perturbation renouvelant les peuplements sont étiquetés feu de forêt et récolte, le niveau inférieur de confiance étant aussi fourni. La distinction et la communication des probabilités d’appartenance à une classe inférieure servent à indiquer aux utilisateurs que certains changements étaient difficiles à attribuer à un type, mais qu’ils sont considérés comme correctement catégorisés, de façon générale. Pour avoir un aperçu des données, du traitement des images et des méthodes de détection des changements dans les séries chronologiques, ainsi que des renseignements sur l’évaluation indépendante de l’exactitude des données, voir Hermosilla et coll. (2016). Si vous utilisez les données, prière d’en citer la source comme suit : White, J.C., M.A. Wulder, T. Hermosilla, N.C. Coops, and G. Hobart. (2017). A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment. 192: 303-321.(White et al. 2017). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, L.B.,Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, Vol. 9. ( Hermosilla et al. 2016). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, (2017). Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation, Vol. 63. ( Hermosilla et al. 2017). Changer le type 2012-2015 (GeoTif, 90MB),
Changer d'année 12-15 Les données annuelles des changements forestiers décrites ici sont une mise à jour des données ouvertes publiées précédemment. La plage de dates pour ces données est de 2012 à 2015. Les données relatives aux changements forestiers que renferme ce produit ont une portée nationale (écosystème forestier entier) et offrent la première caractérisation complète des feux de forêt et des récoltes au Canada à une résolution spatiale en rapport avec l’impact humain. Les informations recueillies représentent vingt-cinq années de renouvellement des peuplements dans les forêts du pays. Elles proviennent d’une source unique de données cohérentes et spatialement explicites, obtenues de manière entièrement automatisée. La capacité démontrée de caractériser les forêts à une résolution qui saisit l’impact humain est essentielle pour établir la base de référence destinée à la surveillance détaillée des écosystèmes forestiers des points de vue des sciences et de la gestion. Des séries chronologiques de données Landsat ont servi à caractériser les tendances nationales des perturbations causées par le feu et la récolte qui renouvellent les peuplements pour la période de 1985 à 2010 sur les 650 millions d’hectares forestiers du Canada. Les données Landsat ont une résolution de 30 m, de sorte que les informations relatives aux changements sont très détaillées et en rapport avec l’impact humain. Elles permettent de suivre les changements forestiers annuels qui renouvellent les peuplements. Les types de perturbation renouvelant les peuplements sont étiquetés feu de forêt et récolte, le niveau inférieur de confiance étant aussi fourni. La distinction et la communication des probabilités d’appartenance à une classe inférieure servent à indiquer aux utilisateurs que certains changements étaient difficiles à attribuer à un type, mais qu’ils sont considérés comme correctement catégorisés, de façon générale. Pour avoir un aperçu des données, du traitement des images et des méthodes de détection des changements dans les séries chronologiques, ainsi que des renseignements sur l’évaluation indépendante de l’exactitude des données, voir Hermosilla et coll. (2016). Si vous utilisez les données, prière d’en citer la source comme suit : White, J.C., M.A. Wulder, T. Hermosilla, N.C. Coops, and G. Hobart. (2017). ( White et al. 2017). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, L.B.,Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, Vol. 9. ( Hermosilla et al. 2016). Hermosilla, T., M.A. Wulder, J.C.,White, N.C.,Coops, G. W.,Hobart, (2017). Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation, Vol. 63. ( Hermosilla et al. 2017). Changer d'année 2012-2015 (GeoTif, 92MB),
Indice des habitats dynamiques. (2000-2005) Indice des habitats dynamiques. (2000-2005) Des satellites comme MODIS nous permettent d’obtenir des estimations du rayonnement photosynthétiquement actif. Connaître la couverture terrestre permet de calculer quelle fraction du rayonnement solaire incident est absorbée par la végétation. La fraction absorbée par la végétation du rayonnement photosynthétiquement actif (fPAR) est une indication de la vitesse à laquelle la photosynthèse des tissus végétaux transforme le dioxyde de carbone et la lumière solaire en hydrates de carbone. L’addition de tout le carbone assimilé par le couvert végétal au fil du temps donne la productivité primaire brute d’un paysage. Nous utilisons l’imagerie quotidienne diffusée par MODIS pour produire des images composites périodiques et des produits de données mensuels. Nous calculons sur six ans (2000 à 2005) la somme cumulée moyenne annuelle de 72 mesures mensuelles de la fPAR, afin d’estimer toute production végétale annuelle du paysage, la mesure mensuelle de la fPAR mensuelle minimale moyenne intégrée sur un an, laquelle décrit la couverture verte annuelle minimum du paysage observé, et la moyenne intégrée de la covariance annuelle de fPAR, qui décrit la saisonnalité du paysage observé. Nous partageons également la combinaison des valeurs annuelles intégrées aux fins de visualisation et d’analyse comme l’indice des habitats dynamiques [IHD] (Coops et coll. 2008 donnent des informations supplémentaires sur le contexte et la description). Lorsque vous utilisez ces données, veuillez citer : Coops N.C., Wulder M.A., Duro D.C., Han T. et Berry S. 2008. « The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance ». Ecological Indicators, vol. 8, no 5, p. 754–766. DOI : https://doi.org/10.1016/j.ecolind.2008.01.007 .( Coops et al. 2008). Indice des habitats dynamiques 2000-2006 (GeoTif, 138 MB),
Classification des domaines écologiques Classification des domaines écologiques du Canada à partir de données satellitaires. Nous avons utilisé les données obtenues par des satellitaires, notamment 1) la topographie, 2) la productivité du paysage basée sur l’activité photosynthétique et 3) la couverture terrestre pour créer une régionalisation environnementale du territoire canadien qui couvre plus de dix millions de kilomètres carrés. Cette agrégation a produit trois résultats principaux. Un processus de classification multivariée en deux étapes a généré un premier regroupement de 100 classes. Nous avons ensuite appliqué une hiérarchie d’agglomération fondée sur une mesure de la log-vraisemblance de la distance pour créer une régionalisation en 40 puis en 14 classes, visant à regrouper de manière significative les composants écologiquement similaires du territoire canadien. Pour plus de renseignements (y compris un graphique de la hiérarchie des regroupements) et pour citer ces donnez, veuillez utiliser : Coops N.C., Wulder M.A. et Iwanicka D. 2009. « An environmental domain classification of Canada using earth observation data for biodiversity assessment ». Ecological Informatics, vol. 4, no 1, p 8–22, DO I: https://doi.org/10.1016/j.ecoinf.2008.09.005 ( Coops et al. 2009). Classification des domaines écologiques (GeoTif, 42 MB),
Carte d’espèce et la probabilité d’arbre pour la Colombie-Britannique en 2015 2015 Des espèces d’arbres dominantes 2015
Les données représentant les espèces d’arbres dominantes des forêts de la Colombie-Britannique en 2015 sont fondées sur des données Landsat et leur modélisation, dont les résultats sont cartographiés à une résolution spatiale de 30 m. La carte a été produite par l’algorithme de classification des « forêts aléatoires » appliqué à des variables prédictives calculées à partir de séries chronologiques d’images Landsat, notamment la réflectance de la surface, la couverture terrestre, les perturbations forestières et la structure de la forêt, ainsi qu’à des variables accessoires décrivant la topographie et la position. Les échantillons d’entraînement et de validation ont été tirés de l’Inventaire des ressources végétales (Vegetation Resources Inventory), sélectionnés parmi un ensemble stratifié de polygones présentant des conditions internes homogènes et divergeant peu par rapport aux données de télédétection. Des modèles locaux ont été appliqués à des carrés de 100 km x 100 km et, pour éviter les effets de bordure, tenaient compte des échantillons d’entraînement pour les 5 x 5 carrés voisins. Pour les espèces d’arbres qui occupent 80 % de la superficie forestière, l’exactitude globale s’est chiffrée à 72 %. L’étude montre que les données satellitaires et leur modélisation peuvent servir à produire des cartes complètes et à jour des attributs forestiers à l’échelle des sous peuplements en Colombie Britannique (Canada).
Probabilité d’espèce d’arbre 2015
Ce produit cartographique présente des données de distribution de probabilité d’appartenance à une classe d’espèce d’arbre en Colombie-Britannique d’après la modélisation de données Landsat donnant des résultats à résolution spatiale de 30 m. Les données représentent la probabilité d’appartenance à une classe d’espèce d’arbre en 2015. La carte a été produite par l’algorithme de classification des « forêts aléatoires » appliqué à des variables prédictives calculées à partir de séries chronologiques d’images Landsat, notamment la réflectance de la surface, la couverture terrestre, les perturbations forestières et la structure de la forêt, ainsi qu’à des variables accessoires décrivant la topographie et la position. Les échantillons d’entraînement et de validation ont été tirés de l’Inventaire des ressources végétales (Vegetation Resources Inventory), sélectionnés parmi un ensemble stratifié de polygones présentant des conditions internes homogènes et divergeant peu par rapport aux données de télédétection. Des modèles locaux ont été appliqués à des carrés de 100 km x 100 km et, pour éviter les effets de bordure, tenaient compte des échantillons d’entraînement pour les 5 x 5 carrés voisins. Pour les espèces d’arbres qui occupent 80 % de la superficie forestière, l’exactitude globale s’est chiffrée à 72 %. Un élément du processus de cartographie a consisté à obtenir les « votes » reçus pour chaque classe par les modèles de « forêts aléatoires ». Les votes sont analogues aux probabilités d’appartenance à une classe et renseignent davantage sur l’incertitude des classes de couverture terrestre à utiliser dans la modélisation. Les probabilités d’appartenance à une classe d’arbre inférieures à 5 % ont été masquées et converties à zéro.
Lorsque vous utilisez ces données, veuillez en citer la source comme suit : Shang, C., Coops, N.C., Wulder, M.A., White, J.C., et Hermosilla, T. 2020. Update and spatial extension of strategic forest inventories using time series remote sensing and modeling. International Journal of Applied Earth Observation and Geoinformation 84, 101956. DOI: 10.1016/j.jag.2019.101956 ( Shang et al. 2020).
Carte d’espèce et la probabilité d’arbre pour la Colombie-Britannique 2015 (GeoTif, 1.5 GB),